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SUMMARY

Pressure waves are known to be generated at a flame.front whenever
there is a change in the flame speed or the heating value or density of
a combustible mixture. It is shown that if the specific-heats ratio 7y
of the burned and unburned gases are the same, the pressure waves gener-
ated at the flame front are really caused by a change in the rate of heat
release at the flame. In the matter of generation of pressure waves,
therefore, a flame behaves essentially like a heater. The performance of
a flame and a heater is then compared and the conditions under which the
two are dynamically equivalent are stated.

INTRODUCTION

When a flame front experiences a change in the flame speed or a
change in the heating value or density of the mixture it consumes, pres-
sure waves ere generated. For a plane flame front, two families of
pressure wvaves of essentially the same strength are produced, one propa-
gating into the fresh combustible mixture and the other propagating into
.the burned gas. The strength of the pressure waves generated has been
calculated (ref. 1). These pressure waves plsy an important role in the
explanation of many wave phenomene associated with the flame, such as
flame oscillation and the development of detonation waves.

In reference 1, the analysis is principally of a mathematical nature.
No discussion or demonstration is glven to show the mechanism involved in
the generation of "the pressure waves. In this report, it is shown that
the pressure waves genersted at the flame front as a result of changes in
the flame speed, heating value, density, and so forth can be attributed to
8 change in the rate of heat release at the flame front. Consequently,
these pressure waves are generated as a result of the changes in the rate
of expansion of the burned gas behind the flame front.

Pressure waves generated by the expansion of a heated gas have been

previously investigated by several suthors in connection wilth different
problems. Taylor (ref. 2) in his study of the blast generated by an
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atomic explosion examined the flow field generated by the instant release
of a large amount of heat at a point in space. Lin (ref. 3) solved the
same problem for the two-dimensional case and applied the result to the
discussion of shock waves generated by thunderbolts and by meteors or
missiles moving at hypersonic speeds. Wu (ref. 4) studied the linearized
theory of pressure waves generated by heat release, taking into account
both the compressibility effects and the heat conductivity. Chu (ref. 5)
examined the pressure waves produced by heat addition at a constant rate
in tubes and at a parsbolic rate in space and applied the results to the
shock waves sustained by a uniformly expanding fleme front.

The author would like to thank Drs. Francis H. Clauser and Leslie
S. G. Kovdsznay for their interest and encouragement in this research.
The assistance of Mr: Richard Hsieh in the preparation of the manuscript
is gratefully appreciated. This research was conducted at the Department
of Aeronautics of The Johns Hopkins University under the sponsorship and
with the financisal assistance of the National Advisory Committee for
Aeronautics.

SYMBOLS
A cross-sectional area of a tube
Ap flame area
Cp specific heat at constént pressure
c veloclty of sound
- 2
D pressuré
Q heat release per unit mass of medium
R gas constant
S entropy
Sg, apparent flame speed (relative to glven coordinate system)
S | flame speed
T temperature

u velocity
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A operator signifying "finitg increment of"

e} operator signifying "small change of"

V4 ratio of CP to specific heat at constent volume

p density

w rate of heat release per unit flame (or heater) ares

Subscripts 1 and 2 indicate, respectively, conditions of flow ahead
of and behind the flame (or the heater). -

MECHANISM OF GENERATION OF PRESSURE WAVES

Let us consider a plane flame front propagating into a combustible
mixture. A flame front considered as a surface of discontinuity is char-
acterized by its speed of propagation relative to the combustible medium
(i.e., the flame speed S¢) and by the amount of heat it releases per

unit mass of the fresh mixture it consumes (i.e., the heating value Q).
The flame speed and heating value of a given mixture are supposed to be
knovn functions of the thermodynamic state of the mixture.

Quantitative analysis of the pressure waves generated by the flame
can be carried out simply as follows (ref. 1). Suppose that the medium
ahead of the flame front has a pressure Py, & temperature Tl, a den-

sity pl,’a velocity uy, and a veloclty of sound Cqo’ The corresponding

quantities for the medium behind the flame are denoted, respectively, by
Py T2, Pos Yy and Cye The flame itself is seen to be propagating

In the direction of the negative x-axis (fig. 1) with a speed Sg (s0

that the flame speed St = Sg + ul). Suppose that there is a small change
in flame speed from St to St + BS¢ and/or a small change in the heating
value of the mixture from Q to Q + 5Q and/or a small change in the
entropy (or density) of the fresh mixture from S1 to 8; + 83y, where

65y 59 851 <«

5% X and EI— 1. At the fleme front, in order to maintain the
conservation laws, pressure waves must be generated. These pressure waves
increase the pressure immediately shead of and behind the flame front to
Py + &pp and po + 8po, respectively, the velocity immediately shead of

and behind the flame froqt to u; + Su; and Uy + Bdu,, respectively, and

. 55 8S 5p; Bp,  Bu
so forth. When —v, 92 and L << 1, then —%, —2 L o4

S¢ Q 51 P1~ P2 S

to)
—Eg-<< 1, so that the 3p's and du's are related by the characteristic

Sg

relations for plane waves
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op du

Py ¢
8p s)
2 2

In addition, the equations representing the conservation of mass, momentum,
and energy at the flame front can be combined into two equations involving
apl, 8P, du;., and Bu, which are

%y _ % (3)
PR P

Py By \§1T1 7o BTy

S‘b 72 \CPlTl
75 - 1 [Cp,T2 8S
2 2 | et (%)
72 CP]_Tl Ry

(cf. eqs. (16a) and (16b) of ref. 1) provided that terms of the order of
the square (or higher power) of the Mach number of the flame are neglected
oS 85 ts] s) du. ts)

t: ‘8—Q': l) Pl; P2: l: and >2 are dropped
S¢ 7 Q7 8 7 P T P B¢ St
out. TIn these equations, Ry, Rp, Cpl, CP2’ 71, and 7, are, respec-

tively, the gas constants, specific heats at constant pressure, and
specific-heats ratios of the medium immediately ahead of and behind the
flame front. From equations (1) to (4) solutions maey be obtained for &pq,

Spa, Sul, and 8u2, thus giving the strength and sign of the pressure
waves generated at the flame front.

and products of

Although quantitative details describing the flow field following
changes in the flame speed, heating value, and/or entropy of the combus-
tible mixture have been given and discussed in reference 1, as yet nothing
concerning the basic physical mechanism responsible for the generation of
pressure waves at the flame front has appeared. A remarkable property of
equation (4) clarifies the reason. It is shown subsequently that the
effect of changes in the flame speed S;, the heating value Q, endfor

the entropy S; can be accounted for by the effect resulting from the
change in a single physical variable , the rate of heat release per unit

area of the flame front, provided that 7y, = 7,3 for, of the four equations

t
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(egs. (1) to (%)) which determine the four unknowns &p,, \6p2, 8u, , and
du,, the changes 58S, 8Q, and &S; occur only in the last equation

(eq. (4)) and yet these changes can be combined into the change of the
single variable w.

The rate of heat release per unlt flame area, by definition, is

w = 5¢01Q (5)

so0 that there will, in general, be a change in o whenever there are
changes in St’ P> and for Q. Assuming that these changes are small,

then

sa - BBt %1, (6)
o Sy Pl Q.

Now, Spl/pl is related to the change in entropy by the equastion of state

&S

5p op
Loty 1L (7)

L oy N1 P
and Q 1is related to the change of temperature across the flame by

Q= CpT2 - Cp 1 ®)

(provided that terms of order of the square of Mach number of the flame
are neglected). Substituting equations (7) and (8) into equation (6) and

T2
multiplying the result by |—2

- 1} give
PlTl

(CPeTE ] % %y, o _ (P22 9531 _ (szT’-’ ) 1) B0 _1_?}'11_> (9)
CP]_T]- S t CP]_Tl CPlTl Cpl CP]_T]- o 71 Pp

Comparing equation (9) with the right-hand side of equation (4), it is at
once evident that if 7L = Yoo equation (4) can be simplified to
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Bup - Buy _ <R2T2 ) 1) (.?zn ) §p_l) (10)

St RTy [\ Py

Thus, 8py, OPp, Ouj, and Bu, can be calculated from the four equa-

tions (1), (2), (3), and (10) instead of equations (1) to (4); further-
more, it is proved that the pressure waves generated by changes in flame
speed, heating value, and density of the combustible mixture are really
caused by a change in the rate of heat release at the flame front pro-

vided that 7y = 75. The physical mechanism involved in the generation

of pressure waves at the flame front is now clear. A change in the

flame speed, heating value, and density of the fresh combustible mixture
generally leads to a change in the rate of heat release at the flame front.
When the rate of heat release by the flame 1is changed, the rate of expan-
sion of the volume of the burned gas 1s altered. This can best be seen
by following a volume (or a lump) of combustible mixture through the
fleme (see fig. 2). As far as the fluid particles outside the volume of
gas are concerned, the fictitious boundaries of the yolume (shown by
dashed lines in fig. 2) are not different from a solld wall expanding at
the same speed as the boundaries. Consequently, when there is a change
in the rate of expansion of the burned gas, pressure waves are produced.

The fact that the nonhomogeneous terms on the right-hend side of
equation (%) can be nicely combined into a single physical variable w,
the rate of heat release per unit area of the flame (for the case
7y = 72), suggests that the whole analysis might have become simpler if

o had been introduced at an earlier stage. This may be demonstrated

and a better insight into the role played by ‘o may be acquired if equa-
tion (10) is derived directly from the first principles. In so doing, the
accuracy of the conclusions already reached and the factors neglected may
be seen more clearly.

Using the notations already introduced (fig. 1), consideration of

the conservation of mass, momentum, and energy at the flame front leads
to the three equations

02(“2 + Sé.) = pl(ul + Sa.) (1)

Do + po (u2 + Sa)2 Py + pl(ul + Sa)z (12)

® = pp (u2 + Sg) <Cp2T2 + %uzz) - oy (wg + Sq) (CP]_Tl + 32=ulz) (13)
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If the flow conditions immediately ahead of the flame front (indicated
by the subscript 1), as well as w, Rp, and Cp,, are assumed to be

given, the three equations ((11) to (13)), together with the gas law and
the definition of the flame speed St (also assumed given) which are

= DQRQTQ (lll')
St = S& + ul (15)

can be used to solve for the five unknowns po, pp, To, Uy, and Sg.

Now, under normel conditions the speed of propagation of a deflagration
wave is much smsller than the local speed of sound, the ratio being of the

order’of 1072 +to 10-D.. If a coordinate system is chosen so that uy

is alsgo small compared with the local sound speed, then, by solving equa-
tions (11) to (15), it can be easily shown that both u, and S; are

small compered with the local sound speed. Hence, equations (12) and (13)
can be simplified to

Py =Py (16)

= DZ(UQ + S )CP T2 - pl(ul + S )C ]_Tl (17)
Using the gas law, equation (17) can be rewritten as

7. V4 .
= :,—2%—-1)2(% + Sa.) 7_'—1"‘3?1(“1 + S ) (18)

It is observed that equations (18) and (16) do not contain the variables p
and T but only contain p and u.

Now, suppose that there is a sudden change in the rate of heat
release from o to o + Aw, wvhere Aw need not be small compared with
w. There will be corresponding changes in D3, Do, Uy, U, and Sa
to p; + Apy, Py + Apa, 0 + Aul, u, + Au2, and Sy + ASy, where the

changes again need not be small. The conservation laws must hold at all
instants; therefore,
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Py + &Py =Py + APy

-

a)+Aa)=727% 1@2+A92)Q12+Sa+Au2+ASa) -

717]_' 1(;9]_ + Apl) (u]_ + Sy + Oup + ASa)'

which may be simplified to

tp, = &py
e g ) gl o) s b o)

(727? T . 717E 1)[@1(‘11 + 8g)+ (py + £p1) (o + Asa)l

if uge is made of eguations (16) and (17). Equation (15) must also be

satisfied at all instants; therefore,
ASt = ASa + Aul (20)

Substituting this equation and equation (15) into equations (19) gives

bpp = 4Py

oy + o) o - o) +

> (21)

7
Aw:ya?.lApl(u?—u]) +72

72 4] [SAp AS. + Ap, AS
N — g APy + Py Bog + APy ﬁ
75 1 7 -1

7/

9
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It 18 seen that, in addition to the variables Apl,- APE’ AL and Aue,

there are two types of nonhomogeneous terms in equations (21), namely,
N and ASy, unless 77 = 7o, in which case only the term Aw survives.

If, now, only infinitesimal changes are considered, equations (21) became

x:rhich, for the case 7y = 7o, Can easlily be reduced to equetion (10).

+ 5
<In this connection, one need only observe that u, - u; = St(u—a——si - 1)
Uy + D

C, T
T 2 7
= st(&]; - 1) = st(R_Q_g - and o = SypyQ = Stpl(CP2 _ ]) 1
Po R Ty pT1 7L

For the case 7y 7.4 7o, it is clear that the pressure waves generated at

the flame front cannot all be attributed to changes in the rate of heat
release at the flame front. )

If 71 = 7,, equations (21) become

Apy = 4Py
(22)

A‘“,ZlAPl(“e“ul) +731(P1+A91)(A"2'/—‘ul)

where the subscripts on 7 have been deleted. In deriving these equa-
tions it is assumed only that the Mach number of the fleme is so small
that the square and higher powers of Mach number caen be neglected and it
is not assumed that the increments Apl, APE’ Aul, and Aua are small.

These finite increments are produced by shock waves propagating into the
burned and unburned mixture. Now, across a shock wave, the Ap's and Au's
are related by
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1%,
e R ) | (23)
cy
7+l_]; 1
\[ 2y P
1% :
Au2= 7 Po (24)
‘2 Z._+_1.A_p.2_+'l
2y Po

instead of equations (1) and (2). Equations (22) to (24) are then used
to caleulate Ap,, Ap,, Auy, and Ay, in terms of Aw. Thus,

v y pl(l+ﬁ) Cy + Cq APy
fo = Tty (1 - ) + o 5 @)
Jz__ﬁﬂ_*.l

from which one can calculate Ap; in terms of Aw. The first term on

the right side of the equation is actually small compared with the sec-
ond term since it is of the order of the Mach number of the flame. A

get of curves of A—pl versus 22 for -c—2- =1.5, 2.0, 2.5, and 3.0
Py Pic1 c1

and 7y = 1.4 (fig. 3). It is seen from equation (25) that the

gtrength of the shock wave (meeasured in terms of the pressure ratio across

the shock-wave) generated at a flame front as a result of a large change

in the rate of heat release at the flame front is proportional to the two-

thirds power of the nondimensional heat-release parameter L0 )
. 1/2 (cl + ca)pl

apy 7—1,7+l A 2[5
Py 2 2y 1f2(cy + cp)py

This conclusion is analogous to that presented in reference 5 (see eq. (40)
of ref. 5).

In fact,
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Together with the generation of shock waves at the flame front, a
contact surface is produced at the instant when the rate of heat release
changes abruptly. The temperature Jjump across the contact surface can
be readily determined from the continuity equation after Au, is known.

For small changes in o the following equation then applies:

%) 7 -1 Ao (26)

P €3 + ¢ Py

Using the technique of Friedrichs (ref. 6) and equations (19), one can
also calculate the behavior of the shock wave generated by an accelerating
flame, provided that the scattering of the pressure waves by the contin-
uous variation in the entropy of the medium behind the flame front can be
ignored.

If one wishes to examine the individual effect of changes in flame
speed, heating value, and density of the fresh gas, it is only necessary
to calculate Aw in terms of AS;, 2Q, and Apl. Making use of equa-

. 5] 3] fors] : oS
tion (5) and assuming that —El, —Elj 89 ang —t (but not -—§)<G< 1,
o Q €1 Sg
equations (19) become

6p2 _ apl

P2 P
g - By i, ) R_eas> -
S St \R1Ty Ry 8 /Cp,T1

C, T T
BS¢\[ Ppo 2 887 725 -1 5S4\ [“Pr2 )
R_e_<l+ tY P2 = _4\%1 ‘2 GLJr t) 2 _1>P1
Ry S¢ [\Cp;T1 Cpp 72 St /\CpyT1 5]
which should replace equations (1ha) and (14b) of reference 1 where a
misprint in the derivation of the equations has resulted in a few more

terms than are given here. (Fortunately, results of ref. 1 are not
affected by the errors indicated here.)

FLAME AND HEATER

Since the pressure waves generated at a flame front can all be
attributed to a change in the rate of heat release at the flame front
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(assuming 7= 72>, it is naturael to ask under what conditions a flame

can be considered a heater.

To determine these condltions consider a plane heating element
releasing heat at the same rate o as a given flame (i.e., that given
by eq. (5)) and moving with a given speed S, in the direction of the

negative x-axis. If the pressure, temperature, density, and velocity
of the flow lmmediately ahead of and behind the heating element are
denoted by Py, Ps, Ty, To, P15 Posy Wy, and u,, respectively, and
if it is assumed that the heating element has the property of changing
the gas constant and specific heat at constant pressure of the gas it
heated from R; and Qpl to Rp and Cp , respectively, then the

equations of continulty, momentum, and energy which apply at the heater
are exactly the same as those which apply at the fleme front, that is,
equations (11) to (13). The chief difference between s fleme and a
heater lies in the fact that, for a flame, Sy (see egs. (11) to (13))

is not known and is related to the flame speed Si by equation (15),
whereas, for a heater, S; 1s assumed to be given. Of course, 1f the

heater should move in such a menner that equation (15) is always satis-
fied (even if u; 1is not constant with time), then there is absolutely no

difference between a flame and a heater. However, the performance of such
a heater is in no way easier to visualize than the performance of the
flame itself when the flow field is not uniform. If, on the other hand,
the heater should move in some other way, the performance of the heater
and the flame will no longer be the same. The problem is then to deter-
mine the extent to which this difference between the flame and heater is
important.

This problem can be approached by comparing the "dynemic behavior"l of
a given flame with that of a heater releasing heat at a rate equal to the
rate of heat release of the flame. The flow fields ahead of and behind the
heater are therefore identical with those of the flame. Now, suppose that
there is a change in the rate of heat release at the flame; the motion of
the flame will change in such a manner that equation (15) remains valid.
On the other hand, however, for the same change in the rate of heat release
at the heater, the motion of the heater may assume any speed one desires.
Since all the equations representing the conservation laws applied at the
heater and the flame are identical in form, equations (16) to (19) apply
equally to the flame as to the heater. When the rate of heat release at
the heater is suddenly changed from o to w + 5w, pressure waves must be

1By the dynamic behavior of a flame (or a heater) is meant the pres-
sure and velocity (but not temperature and density) fields produced by the
fleme (or heater) as a result of a change in the rate of heat release at
the flame (or heater).

Ty

G
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generated at the heater in such a way that equations (l9) are satisfied.
In these equations, Sz and AS, are known; their values depend on the

type of motion assumed for the heater. In the case of the flame, however,
pressure waves must be generated at the flame in such a way that equa-~
tions (21) are satisfied. The strength of the pressure waves genersted

by the heater and the flame are therefore, in general, different. However,
it is observed that if 7L = Yo equations (19) become identical with

equations (21). As a result, exactly the same conditions are imposed on
the pressure waves generated at the heater as at a flame front. Further-
more, these conditions are independent of the motion of the heater after
the change in rate of heat release has taken place, since the term ASg

drops out altogether from the equations. Consequently, it can be concluded
that the dynamic behavior of a flame is identical with that of a heating
element releasing heat at the same rate as the flame at all instants if

(1) the flame propagates with a speed small in comparison with the local
sound speed, (2) there is a current of flow through the heater so that the
relative velocity between the flow and the heater is just equal to the
flame speed, and (3) 7 = 72.2

From this analysis one cannot help but feel intuitively that, as far
as the generation of pressure waves is concerned, a flame behaves essen-
tially like a heater. If such intuition is correct, one may even attempt
to analyze one-dimenslionally certain problems which do not appear to be
one-dimensional at first sight. Thus, consider the propagation of a flame
in a tube. It is found that, in general, the flame front assumes a curved
shape. 1In fact, this must be so because of the quenching and cooling
effects near the wall. After the mixture is ignited, the flame will at
first propagate down the tube with a uniform velocity. It then starts to
osclllate with increasing amplitude. As the flame oscillates its shape
also changes, becoming alternatively fuller and flatter (see ref. 7).

Such a problem can be treated with & one-dimensional model if the flame
is considered a heater and if the tube is long in comparison with its
diemeter. Thus, if Si, Ap, p1, and Q are, respectively, the flame

speed, flame area, density, and heating value of the combustible mixture,
then the rate of hest release by the flame is Afstplg. If the flame is

replaced by a plane heater and if A is the cross-sectional area of the
tube, then the average rate of heat release per unit area of the plane

2In a prepublication review of reference % for the NACA, Dr. Harold
Mirels of the Lewls Laboratory, NACA, independently arrived at almost the
same conclusion. He showed by rather intuitive reasoning that a flame
and a heater are equivalent under conditions (1) and (3) given here. How-
ever, in actuality, condition (2) cannot be ocmitted in establishing the
dynamic equivalence of the two since the coefficilent (u2 - ul) in equa-

tions (19) and (21) must have the same value.
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heater will be

If the rate of heat release of the heater can be adjusted so that equa-
tion (29) is satisfied at all instents, the pressure and velocity fields
generated by the flame may perhaps be reproduced. Furthermore, it also
becomes apparent from equation (29) how the observed oscillation must have
"been induced. A dynsmic system will only start to oscillate with
increasing amplitude either when it is subjected to repeated external
excitations applied at some characteristic frequencies or when the system
itself contains an energy source which interacts with the oscillation in
such a menner as to reinforce the vibration. The first phenomenon is
usually referred to as resonance; the second, as instability. Clearly,
the example cited is a case of instability and the energy source is the
flame itself. Anyone who has observed a flame carefully is usually struck
by the remarkable sensitivity of the fleme configuration to flow distur-
bances. Now, if there are some disturbances in the flow, they will easily
cause & change in flame configuration and, in general, an accompanying
change in the flame area Ap. When Ap changes, the rate of heat release

by the fleme (or the equivalent heater, cf. eq. (29)) is also changed.

This produces pressure waves which under proper circumstances will rein-
force the initial disturbance. In this manner the flame will oscillate
with increasing amplitude as it propagates down the tube. It 1s believed
that the same mechanism is responsible for the self-excitation of vibration
of practically all systems containing a flame front (excluding diffusive
flames) .

With the one-dimensional model just mentioned, the pressure waves

generated at the flame front as a result of a change in the flame area can
easily be calculated. Thus, it is seen from equation (29) that

& . ii: (30)

Substitution of equation (30) into equations (25) and (26) gives the
strength of the pressure waves generated.
An earlier attempt at studying the effects of changes in the flame

area was made by Blackshear (ref. 8). In the notation used herein, the
boundary conditions at the flame (given in ref. 8) are

8p, - Bpqy = O(Ml2) (31a)
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P BAp
Bu, - Buy = u L - 1]2%L (31b)
‘2 L l(pe )Af
where Mj = ;L. The first equation is equivalent to equation (3). If
1

equation (30) is substituted into equation (10), the second boundary
condition at the flame is obtained as

éue - By = ul(p—l - )(Bif- - ﬁ) (31c)

which conteins one more term than equation (31b). However, this additional
term is of the order of M; (see eq. (1)) and, hence, is unimportant if

M < 1.

It should be added here that boundasry conditions (3la) and (3lc) are
not sufficient to solve such a problem as the instability induced by the
flame. The answer is still needed to the important question of how the
change of the flame area 8Af should vafy with the fluctuations in the

flow. The answer, in general, will depend upon the system considered and

- must be analyzed for each individusal case. It is this dependence which
introduces a time lag in the response of a flame front to flow disturbances
in many systems where the main feedback mechanism responsible for the self-
excited osclllations is known to be due to the fluctuation in flame area
with flow disturbances.

RECAPITULATION AND DISCUSSION

The present analysis provides strong indications that the principal
physical cause of the production of pressure waves at a flame front is the
change in the rate of heat released by the flame. This change in the rate
of heat release could be induced by a change in the flame area (accompa-
nying any change in flame configuration) and/or & change in the flame
speed and/or a change in the density of the unburned medium.

It is proved that the pressure waves generated at plane flame fronts
of zero thickness are all due to the change in the rate of heat release at
the flame front when the specific-heat ratios ¢ of the burned and
unburned gases are the same., The exact conditions of the equivalence of a
plane flame front and a heater have been stated previously. The assumption
of a flame front of zero thickness necessarily implies an instantaneous
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regponse of the flame chemistry to pressure disturbances or other changes.
(See footnote, p. 604, ref. 1.) The assumptions of a plane flame front
and one-dimensional disturbances eliminate the time lag in the response of
the fleme to changes in flow conditions.

In practice, the flame front is never exactly plane; neither are the
flow disturbances one dimensional. Owing to such lack of one dimensional-
1ty the total rate of heat release by a flame does not vary with changes
in flow conditions instentaneously. This, or whatever other causes intro-
duce a time lag in the response of the flame to flow disturbances, has an
important bearing in the study of the self-excited oscillatlions in a sys-
tem containing a heat source. However, 1f the mechanism of production of
pressure waves suggested by this analysis is true, the flame will still
be similar to a heater in the production of pressure waves if the rdte of
heat release by the heater lags behind the flow disturbances in exactly
‘the same manner as that of the flame.

The Johns Hopkins University,
Baltimore, Md., October 1, 195L4.

17
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Figure 1l.- Flame speed St = Sg + uj.
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Figure 2.- Expansion of volume of gaseous mixture undergoing combusition.
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Figure 3.- Shock strength versus change In rate of heat release at
fleme front.
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